Math, asked by mvn30, 6 months ago

plzzzzzz help me.. ​

Attachments:

Answers

Answered by BrainlyEmpire
5

\large{\red{\bold{\underline{Given:}}}}

(i) f (Focal Length) = -5cm

(ii) u (Object Distance) = -10cm

(iii) h (Object height) = 6cm

\large{\green{\bold{\underline{To \: Calculate:}}}}

(i) v (image distance) = ????

(ii) h' (Size of the image) = ???

\large{\blue{\bold{\underline{Formula \: Used:}}}}

  \sf \: \frac{1}{f}  =  \frac{1}{v} -  \frac{1}{u}

\large{\red{\bold{\underline{Calculation:}}}}

\rightarrow \sf \:  \frac{1}{v}  =  \frac{1}{f}  +  \frac{1}{u} \\  \\ \rightarrow \sf \:  \frac{1}{v} =  -  \frac{1}{5}  +  ( -  \frac{1}{10} ) \\  \\ \rightarrow \sf \:  \frac{1}{v} =  -  \frac{1}{5}  -  \frac{1}{10}  \\  \\ \rightarrow \sf \:  \frac{1}{v} =  \frac{ - 1 \times 2 - 1}{10}  \\  \\ \rightarrow \sf \:  \frac{1}{v} =  \frac{ - 3}{10} \\  \\ \rightarrow \sf \: v =  - 3.33cm

\large{\pink{\bold{\underline{Now:}}}}

As per our information;-

 \sf \:  \frac{Size \: of \: the \: Image}{Size \: of \: the \: object}  =  +  \frac{v}{u}

\large{\green{\bold{\underline{On \: putting \: all \: the \: values:}}}}

\rightarrow \:  \sf \: \frac{h'}{h} =  \frac{ - 3.3}{ - 10}  \\  \\ \rightarrow \:  \sf \: \frac{h'}{6} = \frac{  \cancel- 3.3}{  \cancel- 10} \\  \\ \rightarrow \:  \sf \: \frac{h'}{6} = \frac{3.3}{10} \\  \\ \rightarrow \:  \sf \: h' =  \frac{6 \times 3.3}{10} \\ \\ \rightarrow \:  \sf \: h' =  \frac{19.8}{10} \\  \\ \rightarrow \:  \sf \: h' = 1.98

\large{\pink{\bold{\underline{Hence:}}}}

Size of the image is 1.98cm.

\large{\orange{\bold{\underline{Related \: Information:}}}}

\rightarrow \: \sf \: Always \: virtual \: image \: will \: be \:formed \: by \\ \sf \: concave \: lens. \\  \\ \rightarrow \: \sf \: Image \: will \: be \: erect. \\  \\ \rightarrow \: \sf \: Image \: will \: be \: formed \: always \: on \: the \: same \\ \sf \: side \: of \: the \: object.

Answered by BʀᴀɪɴʟʏAʙCᴅ
35

\huge\mathcal{\mid{\mid{\underline{\green{Good\: Afternoon\:}}}{\mid{\mid}}}} \\

Qᴜᴇsᴛɪᴏɴ ;-

❥︎ An object of height 6cm is placed perpendicular to the principle axis of a concave lens of focal length 5cm. Use the lens formula to determine the position, size and nature of the image if the distance from the lens is 10cm.

\huge{\orange{\boxed{\fcolorbox{aqua}{indigo}{\color{lime}ANSWER}}}} \\

\Large\bf\pink{GiVeN,}

  • \bf{\red{Height\:of\: object}}(h_i)\:=\:6\:cm\:

  • \bf{\green{Focal\: length}}(f)\:=\:5\:cm\:

  • \bf{\red{Object\: distance}}(u)\:=\:10\:cm\: \\

\Large\bf\orange{We\: know\: that,}

\blue\bigstar\:\boxed{\purple{\bf{\dfrac{1}{v}\:-\:\dfrac{1}{u}\:=\:\dfrac{1}{f}\:}}} \\

:\implies\:\sf{\dfrac{1}{v}\:=\:\dfrac{1}{f}\:+\:\dfrac{1}{u}\:} \\

:\implies\:\sf{\dfrac{1}{v}\:=\:-\dfrac{1}{5}\:+\:\Big(\dfrac{1}{-10}\Big)\:} \\

:\implies\:\sf{\dfrac{1}{v}\:=\:-\dfrac{1}{5}\:-\:\dfrac{1}{10}\:} \\

:\implies\:\sf{\dfrac{1}{v}\:=\:\dfrac{-\:2\:-\:1}{10}\:} \\

:\implies\:\sf{\dfrac{1}{v}\:=\:\dfrac{-3}{10}\:} \\

:\implies\:\sf{v\:=\:\dfrac{-10}{3}} \\

:\implies\:\bf\green{v\:=\:-3.33\:cm} \\

\Large\bf\red{Also\:we\: have,}

\orange\bigstar\:\boxed{\purple{\bf{Magnification\:=\:\dfrac{v}{u}\:=\:\dfrac{h_i}{h_o}\:}}} \\

:\implies\:\sf{\dfrac{-\frac{10}{3}}{-10}\:=\:\dfrac{h_i}{6}\:} \\

:\implies\:\sf{\dfrac{1}{3}\times{6}\:=\:h_i\:} \\

:\implies\:\bf{h_i\:=\:{2}\:cm} \\

\Large\bold\therefore The image of size 2cm will be formed infront of the lens at a distance of 3.33cm from the lens. Thus, the nature of image is virtual and erect.

Similar questions