Math, asked by vruddhi14, 1 year ago

plzzzzzz help me out this question is so hard

Attachments:

Answers

Answered by isyllus
0

Given:   x+y=90^\circ

To prove:   \dfrac{\sin^2x}{\cos^2y}+\dfrac{\tan x\cdot \tan y+\tan x\cdot \cot y}{\sin x\cdot\sec y}=1+\text{cosec}^2 y

Formula:   \sin(90-\theta)=\cos\theta

Proof:

Taking left side and to prove right side.

\Rightarrow \dfrac{\sin^2x}{\cos^2y}+\dfrac{\tan x\cdot \tan y+\tan x\cdot \cot y}{\sin x\cdot\sec y}

\Rightarrow \dfrac{\sin^2(90-y)}{\cos^2y}+\dfrac{\tan x\cdot \tan y+\tan x\cdot \cot y}{\sin (90-y)\cdot\sec y}

\Rightarrow \dfrac{\cos^2y}{\cos^2y}+\dfrac{\tan x( \tan y+\cot y)}{\cos y\cdot\sec y}

\Rightarrow 1+\dfrac{\tan (90-y)( 1+\cot^2 y)}{\cot y\cdot \cos y\cdot\sec y}

\Rightarrow 1+\dfrac{\cot y\cdot \text{cosec}^2y}{\cot y}

\Rightarrow 1+ \text{cosec}^2y=RHS

Hence Proved  

Similar questions