Math, asked by rajs40shah, 8 months ago

Plzzzzzzz no spamming
if you know plzz answer it is urgent​

Attachments:

Answers

Answered by kaushik05
22

To prove:

 \star \:  \frac{ { \cos}^{2} \theta \:  +  { \tan}^{2} \theta - 1  }{ { \sin}^{2} \theta}  =  { \tan}^{2}  \theta \\

Solution:

LHS

 \implies\:  \frac{ { \cos}^{2} \theta \:  +  { \tan}^{2} \theta - 1  }{ { \sin}^{2} \theta}  \\  \ \\  \implies  \:  \frac{ { \cos}^{2} \theta \:  +  { \tan}^{2} \theta - ( { \sin}^{2}  \theta +  { \cos}^{2 }  \theta }{ { \sin}^{2} \theta}  \\  \\  \implies \: \frac{ { \cos}^{2} \theta \:  +  { \tan}^{2} \theta - { \sin}^{2}  \theta  -  { \cos}^{2 }  \theta }{ { \sin}^{2} \theta} \\  \\  \implies \:  \frac{ { \tan}^{2} \theta -   { \sin}^{2}   \theta}{ { \sin}^{2}  \theta}  \\  \\  \implies \:  \frac{ \frac{ { \sin}^{2} \theta }{  { \cos}^{2} \theta  } -  { \sin}^{2}  \theta }{  { \sin}^{2}  \theta}   \\  \\  \implies \:  \frac{ { \sin}^{2}  \theta -  { \sin}^{2}  \theta \:  { \cos}^{2}  \theta}{  { \sin}^{2}  \theta \:  { \cos}^{2} \theta }  \\  \\  \implies \:  \frac{ {  \cancel{\sin}^{2} \theta }(1 -  { \cos}^{2}  \theta)}{  \cancel{ { \sin}^{2} \theta} { \cos}^{2} \theta  }  \\  \\  \: \\  \\  \implies \:  \frac{ { \sin}^{2} \theta }{ { \cos}^{2}  \theta}  \\  \\  \implies \:  { \tan}^{2}  \theta

LHS = RHS .

  \huge\boxed{ \mathfrak{ \red{ \: proved}}}

Formula used:

 \star \:  { \sin}^{2}  \alpha  +  { \cos}^{2}  \alpha  = 1 \\  \\  \star \:  \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

Answered by parry8016
1

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions