Math, asked by spsunitapradhan1986, 9 months ago

plzzzzzzzz answer faster with explaination

step by step explanation​

Attachments:

Answers

Answered by rani462059
1

Step-by-step explanation:

mark it Brainlist answer

Attachments:
Answered by Anonymous
68

Question :

Evaluate:

(128) {}^{ \frac{ - 2}{7} }  - (625 {}^{ - 3} ) {}^{ \frac{ - 1}{4} }  + 14(2401) {}^{  \frac{ - 1}{4} }

Properties of Exponents:

1)a {}^{m}  \times a {}^{n}  = a {}^{m + n}

2) \frac{a {}^{m} }{a {}^{n} }  = a {}^{m - n}

3)a {}^{m}  \times b {}^{m}  = (ab) {}^{m}

4)a {}^{0}  = 1

Solution :

(128) {}^{ \frac{ - 2}{7} }  - (625 { }^{ - 3} ) {}^{ \frac{ - 1}{4} }  + 14(2401) {}^{ \frac{ - 1}{4} }

 =  (2 {}^{7}  ) {}^{ \frac{ - 2}{7} }  - (5 {}^{4} ) {}^{ - 3 \times  \frac{ - 1}{4} }  + 14 \times ( 7 {}^{4} ) {}^{ \frac{ -1 }{4} }

 = 2 {}^{ - 2}  - 5 {}^{3}  + 14 \times 7 { }^{ - 1}

 =  \frac{1}{2 {}^{2} }  - 125 + 14 \times  \frac{1}{7}

 =  \frac{1}{4}  - 625 + 2

 =  \frac{1 - 125 \times 4 + 2 \times 4}{4}

 = \frac{1-500+8}{4}  =  \frac{-491}{4}

it is the required solution!

Similar questions