Math, asked by sakshi345, 1 year ago

plzzzzzzzz solve it it's urgent

Attachments:

Answers

Answered by DaIncredible
5
Heya there !!!
Here is the answer you were looking for:

Identity used :

(x + y)(x - y) =   {x}^{2}  -  {y}^{2}

 \frac{4}{3 \sqrt{3}  - 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2} }  \\

On rationalizing the denominators we get,

 \frac{4}{3 \sqrt{3}  - 2 \sqrt{2} }  \times  \frac{3 \sqrt{3}  + 2 \sqrt{2} }{3 \sqrt{3}  + 2 \sqrt{2} }  +  \frac{3}{3 \sqrt{3}  + 2 \sqrt{2} }  \times  \frac{3 \sqrt{3} - 2 \sqrt{2}  }{3 \sqrt{3}  - 2 \sqrt{2} }  \\  \\  =  \frac{4(3 \sqrt{3}  + 2 \sqrt{2} )}{ {(3 \sqrt{3}) }^{2}  -  {(2 \sqrt{2}) }^{2} }  +  \frac{3(3 \sqrt{3} - 2 \sqrt{2})  }{ {(3 \sqrt{3} )}^{2}  -  {(2 \sqrt{2} )}^{2} }  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} }{27 - 8}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{27 - 8}  \\  \\  =  \frac{12 \sqrt{3} + 8 \sqrt{2}  }{19}  +  \frac{9 \sqrt{3} - 6 \sqrt{2}  }{19}  \\  \\  =  \frac{12 \sqrt{3}  + 8 \sqrt{2} + 9 \sqrt{3}  - 6 \sqrt{2}  }{19}  \\  \\  =  \frac{21 \sqrt{3}  + 2 \sqrt{2} }{19}  \\  \\  =  \frac{21 \times 1.732 + 2 \times 1.414}{19}  \\  \\  =  \frac{36.372 + 2.828}{19}  \\  \\  =   \frac{39.2}{19}  \\  \\  = 2.06 \: (approx)

Hope this helps!!!

If you have any doubt regarding to this answer, feel free to ask me in the comment section ^_^

@Mahak24

Thanks...
☺☺

DaIncredible: thanks for brainliest :-)
Answered by Anonymous
4
Hello here ...

Solution here
__________________________

we have
 \frac{4}{3 \sqrt{2} - 2 \sqrt{2}  } +  \frac{3}{3 \sqrt{3} + 2 \sqrt{2}  }

 =  >  \frac{4(3 \sqrt{3}  + 2 \sqrt{2} ) + 3(3 \sqrt{3} - 2 \sqrt{2} ) }{(3 \sqrt{3}  - 2 \sqrt{2} )(3 \sqrt{3}  + 2 \sqrt{2} )}  \\  \\  =  >   \frac{12 \sqrt{3}  + 8 \sqrt{2} + 9 \sqrt{3}   - 6 \sqrt{2} }{(3 \sqrt{3} {)}^{2} - (2 \sqrt{2}  {)}^{2}   }
[using formula (a + b ) ( a - b)=a^2 - b^2]

 =  >  \frac{21 \sqrt{3} + 2 \sqrt{2}  }{27 - 8}  =  \frac{21 \sqrt{3} + 2 \sqrt{2}  }{19}  \\  \\  =  >  \frac{21 \times 1.732 + 2 \times 1.414}{19}  \\  \\  =  >  \frac{36.372 + 2.828}{19}  =  \frac{39.2}{19}  \\  \\  =  > 2.06316 = 2.063. \:  \: answer
________________________________

HOPE it's helps you.
☺☺☺

Anonymous: i need brailnlist
Similar questions