Math, asked by pani92, 6 months ago

plzzzzzzzzzz solve...... ​

Attachments:

Answers

Answered by BrainlyEmpire
1

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 21cm \\  \\  \sf \: Height \: of \: cylinder = 49cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 21(21 + 49) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 21(70) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel21 \times 70  \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  44  \times 3 \times 70 \\ \\ \rightarrow \: \sf \: Total \:  surface  \: area = 9240 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 21 \times 49 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel21 \times 49 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 3  \times 48 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 6468 \:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 9240 {cm}^{2}  \: and \: curved \: surface \: area \: is \: 6468 {cm}^{2}.

Answered by Anonymous
12

Answer:

The answer

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 21(21 + 49) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 21(70) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel21 \times 70  \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  44  \times 3 \times 70 \\ \\ \rightarrow \: \sf \: Total \:  surface  \: area = 9240 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 21 \times 49 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel21 \times 49 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 3  \times 48 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 6468 \:  {cm}^{2}

hope this helps you

Similar questions