Math, asked by yupBTS, 9 months ago

plzzzzzzzzzzzzz help me​

Attachments:

Answers

Answered by ButterFliee
45

QUESTION:

The curved surface area of a cylinder is 264 cm² and circumference of the base 44 cm. Find the height of the cylinder.

  • 6 cm
  • 5 cm
  • 8 cm
  • 4 cm

ANSWER

  • 6 cm ()

GIVEN:

Let the radius of the cylinder be 'r' cm

The circumference of the base of the cylinder is 44 cm

To find the circumference, we use the formula:-

CIRCUMFERENCE = 2πr

According to question:-

➜ 44 = 2 \times \sf{\dfrac{22}{7}} \times r

➜ 44 = \sf{\dfrac{44}{7}} \times r

➜ 44 \times 7 = 44 \times r

\sf{\cancel\dfrac{308}{44}} = r

r = 7 cm

Let the height of the cylinder be 'h' cm

We know that, the formula for finding the CSA of Cylinder is:-

C.S.A = 2πrh

On putting the values in the formula, we get

➜ 264 = 2 \times \sf{\dfrac{22}{7}} \times 7 \times h

➜ 264 = 2 \times 22 \times h

➜ 264 = 44 \times h

\sf{\cancel\dfrac{264}{44}} = h

h = 6 cm

Hence, the height of the cylinder is 6 cm

______________________


Anonymous: Great ♡
Answered by Anonymous
104

Given : The curved surface area of a cylinder is 264 cm² and circumference of the base 44 cm.

\rule{130}1

Solution :

Let the radius of cylinder be r cm.

\underline{\boldsymbol{According\:to \: Question :}}

\dashrightarrow{\boxed{\boxed{\bf\:\: Circumference \:of\: cylinder= 2\pi r}}}\\\\\\\dashrightarrow\sf\:\: 44 = 2 \times \dfrac{22}{7} \times r\\\\\\\dashrightarrow\sf\:\: 44 = \dfrac{44}{7}\times r\\\\\\\dashrightarrow\sf\:\: 44 \times 7 = 44 \times r\\\\\\\dashrightarrow\sf\:\:  308 = 44 \times r\\\\\\\dashrightarrow\sf\:\: r = \dfrac{308}{44} \\\\\\ \dashrightarrow\:\:\underline{\boxed{\textbf {r = 7 \:cm}}}\:\bigstar

\therefore\:\underline{\textsf{Radius of the cylinder is  \textbf{7 cm}}}.

\rule{150}1

Let the height of the cylinder be h cm.

:\implies{\boxed{\boxed{\bf CSA \:of\: cylinder = 2\pi rh}}} \\\\\\:\implies\sf 264 = 2 \times \dfrac{22}{7} \times 7 \times h\\\\\\:\implies\sf 264 = 2 \times 22 \times h\\\\\\:\implies\sf h = \dfrac{264}{44}\\\\\\:\implies\:\:\underline{\boxed{\textbf { h = 6 cm}}}\:\bigstar

\therefore\:\underline{\textsf{Height of the cylinder is  \textbf{6 cm}}}.

\rule{170}2

\boxed{\begin{minipage}{6.5 cm}\underline{\textsf{\dag \:Some Important Formulae Related to it :}}\\ \\ \bullet\tt Volume = \pi r^2 h\\  \\\bullet\tt Surface\: area = 2 \pi rh + 2 \pi r^2\\ \\\bullet\tt Lateral \:area = 2 \pi rh \\ \\\bullet\tt Base \:area = \pi r^2\end{minipage}}


Anonymous: Awesome♡
Similar questions