Math, asked by sakshi345, 1 year ago

plzzzzzzzzzzzzzzz solve

Attachments:

Answers

Answered by Anonymous
5
Heya Dear,

                 __________________________________

Q . If x = 2 - √3 , find ( x + 1/x )³.

Given,

  x = 2 - √3

∴ 1/x = 1/( 2 - √3 )

By multiplying the denominator and numerator of R.H.S by ( 2 + √3 ).

⇒ 1/x = 1 × ( 2 + √3 ) ÷ ( 2 - √3 ) ( 2 + √3 )

⇒ 1/x = ( 2 + √3 ) ÷ { (2)² - (√3)² }

⇒1/x = ( 2 + √3 ) ÷ ( 4 - 3 )

∴  1/x = ( 2 + √3 ).

Now,

= ( x + 1/x )³

= ( 2 - √3 + 2 + √3 )³

= ( 4 )³ 

= 64.

The required answer is 64.


Hope it helps !

By : Vaibhav
Answered by siddhartharao77
3
Given:  x = 2 -  \sqrt{3}

 = \ \textgreater \  \frac{1}{x} =  \frac{1}{2 -  \sqrt{3} } *  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }

= \ \textgreater \   \frac{2 +  \sqrt{3} }{2^2 - ( \sqrt{3})^2 }

= \ \textgreater \   \frac{2 +  \sqrt{3} }{4 - 3}

= \ \textgreater \  2 +  \sqrt{3}


Now,

x +  \frac{1}{x} = 2 -  \sqrt{3} + 2 +  \sqrt{3}

                             = 4.


Then,

(x +  \frac{1}{x} )^3 = (4)^3

                                   = 64.


Hope this helps!

siddhartharao77: :-)
Similar questions