plzzzzzzzzzzzzzzzzzzzzzzzz plzzzzzzzzzzzzzzzzzzzzzzzz help me in 16 sum
Answers
Answer:
Step-by-step explanation:
Given :
a(x + y) + b(x - y) = a² - ab + b²
a(x + y) - b(x - y) = a² + ab + b²
Find x & y,.
Solution :
a(x + y) + b(x - y) = a² - ab + b²
⇒ ax + ay + bx - by = a² - ab + b²
⇒ x(a + b) + y(a - b) = a² - ab + b² ...(i)
a(x + y) - b(x - y) = a² + ab + b²
⇒ ax + ay - bx + by = a² + ab + b²
⇒ x(a - b) + y(a + b) = a² + ab + b² ...(ii)
by adding both the equations,
We get,
⇒ [x(a + b) + y(a - b)] + [x(a - b) + y(a + b)] = [a² - ab + b²] + [a² - ab + b²]
⇒ x [(a + b) + (a - b)] + y [(a + b) + (a - b)] = 2a² + 2b² = 2(a² + b²)
⇒ x(2a) + y(2a) = 2(a² + b²)
⇒ 2a(x + y) = 2(a² + b²)
⇒ x + y =
⇒ ...(iii)
By substituting the value of (x + y) in given equation :
(given equation)
⇒ a(x + y) + b(x - y) = a² - ab + b²
⇒
⇒
⇒
⇒ b(x - y) = b(-a)
⇒ x - y = -a ...(iv)
By adding both (iii) & (iv),
We get,
⇒ (x + y) + (x - y) = + ( - a)
⇒ 2x =
⇒ x =
By substituting value of x in (iii),
We get,
⇒ x + y =
⇒
⇒