point (-5, 1), (1, P) & (4-2)
are collinear if the value of p
is
Answers
Answered by
7
Answer:
ans will ne p = -1
as it is given in image
Attachments:
Answered by
0
Given:
We have given three points,
A ( -5, 1 ) (x₁, y₁ )
B ( 1, p ) ( x₂ y₂ )
C ( 4, -2 ) ( x₃ y₃ )
To Find:
Value of P?
Solution:
We know that if three points are collinear then the area of the triangle formed by this triangle will be zero.
Area of triangle= × [ x₁ ( y₂ – y₃ ) + x₂ ( y₃ – y₁ ) + x₃( y₁ – y₂ ) ]
so,
area of traingle will be zero.
Put the values of x and y in the above equation and equate to zero.
0 = × [ -5 ( p – (-2) ) + 1 ( -2 – 1 ) + 4 ( 1 – p ) ]
0 = × [ -5 ( p +2 ) + 1 ( -3 ) + 4 ( 1 - p ) ]
0 = × [ -5p - 10 + (-3)+ 4 - 4p ]
0 -9 p - 9
9p = -9
p = -1
Hence the value of p is -1.
Similar questions