Math, asked by devarakondasrinu02, 3 months ago

point C(2,3) divides internally the line segment joining A(3,5) B internally ratio of 1 is to 2​

Answers

Answered by barotyuvraj9
1

Answer:

We have given that point C divides the line segment AB in the ratio 1 : 2.

We have to find the coordinates of the point B.

\begin{gathered}\bullet\sf\:A\:\equiv\:(\:3\:,\:5\:)\:\equiv\:(\:x_{1}\:,\:y_{1}\:)\\\\\bullet\sf\:B\:\equiv\:(\:x_{2}\:,\:y_{2}\:)\\\\\bullet\sf\:C\:\equiv\:(\:2\:,\:3\:)\:\equiv\:(\:x\:,\:y\:)\end{gathered}

∙A≡(3,5)≡(x

1

,y

1

)

∙B≡(x

2

,y

2

)

∙C≡(2,3)≡(x,y)

Now, we know that,

\begin{gathered}\pink{\sf\:x\:=\:\dfrac{\:mx_{2}\:+\:nx_{1}}{m\:+\:n}\:\:,\:\:y\:=\:\dfrac{my_{2}\:+\:ny_{1}}{m\:+\:n}}\:\sf\:\:-\:-\:[\:Section\:formula\:]\\\\:\implies\sf\:2\:=\:\dfrac{1\:(\:x_{2}\:)\:+\:2\:(\:3\:)}{1\:+\:2\:}\:\:,\:\:3\:=\:\dfrac{1\:(\:y_{2}\:)\:+\:2\:(\:5\:)}{1\:+\:2\:}\\\\:\implies\sf\:2\:=\:\dfrac{x_{2}\:+\:6}{3}\:\:,\:\:3\:=\:\dfrac{y_{2}\:+\:10}{3}\\\\:\implies\sf\:2\:\times\:3\:=\:x_{2}\:+\:6\:\:,\:\:3\:\times\:3\:=\:y_{2}\:+\:10\\\\:\implies\sf\:6\:=\:x_{2}\:+\:6\:\:,\:\:9\:=\:y_{2}\:+\:10\\\\:\implies\sf\:x_{2}\:=\:6\:-\:6\:\:,\:\:y_{2}\:=\:9\:-\:10\\\\:\implies\boxed{\red{\sf\:x_{2}\:=\:0\:\:,\:\:y_{2}\:=\:-\:1}}\end{gathered}

x=

m+n

mx

2

+nx

1

,y=

m+n

my

2

+ny

1

−−[Sectionformula]

:⟹2=

1+2

1(x

2

)+2(3)

,3=

1+2

1(y

2

)+2(5)

:⟹2=

3

x

2

+6

,3=

3

y

2

+10

:⟹2×3=x

2

+6,3×3=y

2

+10

:⟹6=x

2

+6,9=y

2

+10

:⟹x

2

=6−6,y

2

=9−10

:⟹

x

2

=0,y

2

=−1

Similar questions