Point C(3.6, -0.4) divides AB in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are ____ . If point D divides in the ratio 4 : 5, the coordinates of point D are____ .
Answers
Answer:
the coordinates of Point B are ( 10 , -4)
the coordinates of point D are ( 10/9 , 1)
Step-by-step explanation:
Point C(3.6, -0.4) divides AB in the ratio 3 : 2.
The coordinates of A are (-6, 5),
we need to find the coordinates of point B
Let say coordinates of point B ( x , y)
if point C divides line AB into m:n ratio
Xc = (mBx + nAx)/(m + n)
Yc = (mBy + nAy)/(m + n)
=> 3.6 = (3x + 2(-6))/(3 + 2)
=> 18 = 3x - 12
=> 3x = 30
=> x = 10
-0.4 = (3y + 2(5))/(3 + 2)
=> -2 = 3y + 10
=> 3y = -12
=> y = -4
the coordinates of Point B are ( 10 , -4)
point D divides AB in ration 4 : 5
A = (-6 , 5) B =(10 , -4)
Dx = (4*10 + 5(-6))/(4 + 5) = 10/9
Dy = (4*(-4) + 5*5)/(4 + 5) = 9/9 = 1
the coordinates of point D are ( 10/9 , 1)
Answer:
Step-by-step explanation:
Point C(3.6, -0.4) (Given)
Coordinates of A are (-6, 5)
Ratio by point C = 3:2.
Ratio by point D = 4:5
Let the coordinates of point B = ( x , y)
Let point C divide the line AB into ratio - m:n, thus
Xc = (mBx + nAx)/(m + n)
Yc = (mBy + nAy)/(m + n)
= 3.6 = (3x + 2(-6))/(3 + 2)
= 18 = 3x - 12
= 3x = 30
= x = 10
-0.4 = (3y + 2(5))/(3 + 2)
= -2 = 3y + 10
= 3y = -12
y = -4
Thus, the coordinates of Point B are ( 10 and -4)
Point D divides AB in ration 4 : 5
A = (-6 , 5) B =(10 , -4)
Dx = (4 × 10 + 5(-6))/(4 + 5)
= 10/9
Dy = (4 × (-4) + 5×5)/(4 + 5)
= 9/9 = 1
Therefore, the coordinates of point D are ( 10/9, 1)