Point D is chosen on the side AC of triangle ABC so that DC = AB, Points M and N are the midpoints of the segments AD and BC, respectively. Angle NMC= α°. Find angle BAC=?
Answers
Answered by
1
Step-by-step explanation:
In ΔADC and ΔBAC,
∠ADC = ∠BAC (Given)
∠ACD = ∠BCA (Common angle)
∴ ΔADC ~ ΔBAC (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
∴ CA/CB =CD/CA
⇒ CA2 = CB.CD.
An alternate method:
Given in ΔABC, ∠ADC = ∠BAC
Consider ΔBAC and ΔADC
∠ADC = ∠BAC (Given)
∠C = ∠C (Common angle)
∴ ΔBAC ~ ΔADC (AA similarity criterion)
⇒
∴ CB x CD = ca2
Similar questions