Math, asked by Gargi9904, 17 days ago

Point E is the midpoint of side BC of parallelogram ABCD (labeled counterclockwise) and AE ∩BD =F. Find the area of ABCD if the area of △BEF is 3 cm2. Answer: 36 cm2

Answers

Answered by vy0840624
0

Step-by-step explanation:

Answer:

The area of parallelogram ABCD is 36 cm².

Step-by-step explanation:

Since here ABCD is the parallelogram.

Where E is the mid point of the line segment BC.

And, F is the intersection point of the segments AE and BD,

Also,  Area of △BEF is 3 .

We have to find Area of parallelogram ABCD.

Since,In  ΔBEF  and ΔACD,

\angle ADF=\angle EBF∠ADF=∠EBF              ( because AD ║ BE )

\angle DFA=\angle BFE∠DFA=∠BFE               (vertically opposite angle)

Thus, By AA similarity postulate,

\triangle BEF\sim \triangle ACD△BEF∼△ACD ,

Thus, \frac{\text{Area of }\triangle ADF}{\text{Area of }\triangle BFE}=(\frac{AD}{BE})^2Area of △BFEArea of △ADF=(BEAD)2

But, AD=2BEAD=2BE ,

\frac{\text{Area of }\triangle ADF}{\text{Area of }\triangle BFE}=(\frac{2BE}{BE})^2=\frac{4}{1}Area of △BFEArea of △ADF=(BE2BE)2=14

\text{Area of }\triangle ADF=12Area of △ADF=12

Similarly\triangle ADB\sim \triangle BAE△ADB∼△BAE ,

Now, let the area of the triangle AFB be x.

Thus, x + 12 = 2(x+3) ( because the area of the ΔADB = 2(area of ΔBAE) )

⇒ x = 6

⇒ \text{Area of }\triangle AFB=6Area of △AFB=6

⇒ \text{Area of }\triangle ABD=12+6=18Area of △ABD=12+6=18

By the definition of diagonal of parallelogram,

\text{Area of parallelogram ABCD}=2\times \text{Area of }\triangle ABD=2\times 18=36Area of parallelogram ABCD=2×Area of △ABD=2×18=36

Therefore, the area of parallelogram ABCD is 36 cm².

Attachments:
Similar questions