Point L is the midpoint of seg DE. If seg DE= 12cm, then seg LE= ____cm
Answers
Answer:
Given:
\textsf{M is the midpoint of line segment AB and AB=8}M is the midpoint of line segment AB and AB=8
\underline{\textsf{To find:}}
To find:
\textsf{Length of AM}Length of AM
\underline{\textsf{Solution:}}
Solution:
\mathsf{We\;know\;that,}Weknowthat,
\textsf{The midpoint of the line segment divides two equal line segments}The midpoint of the line segment divides two equal line segments
\textsf{Since M is the midpoint of line segment AB,}Since M is the midpoint of line segment AB,
\mathsf{we\;have\;AM=BM}wehaveAM=BM
\mathsf{But\,AB=8\;cm}ButAB=8cm
\mathsf{AM+BM=8}AM+BM=8
\mathsf{AM+AM=8}AM+AM=8
\mathsf{2\;AM=8}2AM=8
\mathsf{AM=\dfrac{8}{2}}AM=
2
8
\implies\boxed{\mathsf{AM=4\,cm}}⟹
AM=4cm
Find more:
Coordinates of the midpoint of the line segment joining the point (3, 7) and (5, 9) is