Math, asked by shanemacwan6, 6 months ago

point P(3,b) divides the line segment AB joining the points A(1,2) and B(4,5) in the ratio 2:1 from the side of A.Find the value of b.​

Answers

Answered by VishnuPriya2801
45

Answer:-

Given:

P(3 , b) divides the line segment joining the points A(1 , 2) & B(4 , 5) in the ratio 2 : 1.

using section formula,

i.e., the co - ordinates of a point which divides the line segment joining the points (x₁ , y₁) & (x₂ , y₂) in the ratio m : n are :

 \sf \: (x \: , \: y) =  \bigg( \dfrac{mx _{2} + nx _{1}  }{m + n}  \:  \: , \:  \:  \dfrac{my _{2} + ny _{1}  }{m + n}  \bigg)

Let,

  • x = 3

  • y = b

  • x₁ = 1

  • x₂ = 4

  • y₁ = 2

  • y₂ = 5

  • m = 2

  • n = 1

Hence,

 \sf \implies \: (3 \: , \: b) =  \bigg( \dfrac{(2)(4)+ (1)(1) }{2 + 1}  \:  \:,  \:  \:  \dfrac{(2)(5) + (1)(2)   }{2 + 1}  \bigg) \\  \\ \sf \implies \: (3 \: , \: b) =  \bigg( \dfrac{8+ 1 }{3}  \:  \:  ,\:  \:  \dfrac{10 + 2  }{3}  \bigg) \\  \\ \sf \implies \: (3 \: , \: b) =  \bigg( \dfrac{9}{3}  \:  \:  ,\:  \:  \dfrac{12}{3} \bigg) \\  \\  \sf \implies \: (3 \:  \: b) = (3 \: , \: 4) \\  \\  \sf \: On \: comparing \: both \: sides \: we \: get, \\  \\  \sf \large \implies \red{ b = 4}

Therefore, the value of b is 4.

Answered by bajajpriyanka
2

Answer:

Hope it helps you

Step-by-step explanation:

Have a nice day

Attachments:
Similar questions