Math, asked by KaleAditi2006, 2 days ago

Point P(-4, 6) divides the segment joining points A(-6, 10) and B(r, s) in the ratio 2:1 . Find the coordinates of the point B​

Answers

Answered by shilpashekhawat323
0

Step-by-step explanation:

Join / Login

Class 10>>Maths>>Coordinate Geometry>>Section Formula>>If point ( - 4,6) divides the line seqme

Question

If point (-4,6) divides the line seqment AB with A (-6,10) & B (r,s) in the ratio 2 : 1,  then find r and s

Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then 

(x,y)=(m+nmx2+nx1,m+nmy2+ny1)

& for mid points we have, m:n=1:1.

Therefore, we have

(−4,6)=(2+12r−6,2+125+10)

⇒32r−6=−4

325+10=6

⇒2r−6=−12,25+10=18

Answered by Swarup1998
0

The coordinates of the point B are (-3,4).

Tips:

If A point P\:(x,y) divides the line segment joining the points A\:(x_{1},y_{1}) and B(x_{2},y_{2}) into the ratio m:n, then

x=\dfrac{nx_{1}+mx_{2}}{m+n} and

y=\dfrac{ny_{1}+my_{2}}{m+n}

Step-by-step explanation:

Using the above formula, we have

-4=\dfrac{1(-6)+2(r)}{2+1}

\Rightarrow -4=\dfrac{-6+2r}{3}

\Rightarrow -6+2r=-12

\Rightarrow 2r=-6

\Rightarrow r=-3

and 6=\dfrac{1(10)+2(s)}{2+1}

\Rightarrow 6=\dfrac{10+2s}{3}

\Rightarrow 2s+10=18

\Rightarrow 2s=8

\Rightarrow s=4

∴ the coordinates of B are (-3,4).

#SPJ3

Similar questions