Math, asked by gourav01, 10 months ago

Point P(K, 3) is the mid point of the line segment AB. If AB √52 If units and coordinates of A are (–3, 5), then find the value of K.

Answers

Answered by BrainlyPopularman
4

GIVEN :

A point P(k , 3) is the midpoint of Line segment AB.

• Length AB = √52 unit.

• Coordinate of point A (-3 , 5).

TO FIND :

• Value of k = ?

SOLUTION :

According to the given condition –

 \\  \implies{ \bold{AP =  \dfrac{ AB}{2} }} \\

 \\  \implies{ \bold{AP =  \dfrac{  \sqrt{52} }{2} }} \\

 \\  \implies{ \bold{AP =  \dfrac{ 2 \sqrt{13} }{2} }} \\

 \\  \implies{ \bold{AP =   \sqrt{13} }} \\

• Distance between Point A(-3 , 5) and P(k , 3) is √13 unit.

Distance between two points P(a , b) and Q(c , d) is –

 \\  \longrightarrow \:  \:  \large{ \boxed{ \bold{PQ =   \sqrt{ {(c - a)}^{2}  +  {(d - b)}^{2} } }}} \\

• So that –

 \\  \implies \:  \:  { \bold{AP =   \sqrt{ {(k - ( - 3))}^{2}  +  {(3 - 5)}^{2} } }} \\

 \\  \implies \:  \:  { \bold{ \sqrt{13}  =   \sqrt{ {(k - ( - 3))}^{2}  +  {(3 - 5)}^{2} } }} \\

• Now square on both side –

 \\  \implies \:  \:  { \bold{ {13}  =   { {(k + 3)}^{2}  +  {( - 2)}^{2} } }} \\

 \\  \implies \:  \:  { \bold{ {13}  =   { {(k + 3)}^{2}  +  4} }} \\

 \\  \implies \:  \:  { \bold{   { {(k + 3)}^{2}   = 13 -   4} }} \\

 \\  \implies \:  \:  { \bold{   { {(k + 3)}^{2}   = 9} }} \\

 \\  \implies \:  \:  { \bold{   { k + 3  =  \sqrt{9}} }} \\

 \\  \implies \:  \:  { \bold{   { k + 3  =  \pm \: 3 } }} \\

 \\  \implies \:  \:  { \bold{   { k   =  \pm \: 3 - 3 } }} \\

Take positive(+) sign :

 \\  \implies \:  \:  { \bold{   { k   =  \: 3 - 3 } }} \\

 \\  \implies \:  \large { \boxed{ \bold{   { k   =  \: 0 } }}} \\

Take negative(-) sign :

 \\  \implies \:  \:  { \bold{   { k   =  \: - 3 - 3 } }} \\

 \\  \implies \:  \large { \boxed{ \bold{   { k   =  -6 } }}} \\

Similar questions