Math, asked by HumanBrain, 1 year ago

Point P lies in the exterior of circle with centre O. Tangents through P touch the circle at A and B. If the angle formed by PA and PB is of 80°, then find angle POA.​

Answers

Answered by SushmitaAhluwalia
15

The measure of angle POA is 50°

  • Given,

                P is an external point and PA and PB are tangents to circle with center O such that they meet the circle at A and B.

                ∠APB = 80°

  • Consider triangles, OAP and OBP

                  OA = OB (radii of circle)

                  OP = OP (common side)

                  PA = PB (lengths of tangents from a common point)

                  ∴ OAP≅OBP [from SSS congruence]  

                  ⇒ ∠OPA = OPB (By CPCT)

                  ⇒ ∠OPA = OPB = 40°

      Also

                    ∠OAP = OBP = 90° [∵ tangent is perpendicular to radius]

         Now in ΔOAP

                     ∠A + ∠O + ∠P = 180° [angle sum property]

                     90° + ∠O + 40° = 180°

                        ∠O = 180° - 130°

                     ∴ ∠POA = 50°

Attachments:
Similar questions