Math, asked by krnov19disha, 8 months ago

point P lies on a line segment AB. AP is 4/7th of BP. P lies at (-3, 15) and A lies at (-11, 7). what are the coordinates of B?​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{P(-3,15) is a point on AB and A(-11,7)}

\mathsf{AP=\dfrac{4}{7}BP}

\underline{\textsf{To find:}}

\textsf{Coordinates of B}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{AP=\dfrac{4}{7}BP}

\mathsf{\dfrac{AP}{BP}=\dfrac{4}{7}}

\implies\textsf{P divides AB internally in the ratio 4:7}

\textsf{Then, by section formula}

\mathsf{(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n})=(-3,15)}

\mathsf{(\dfrac{4x_2+7(-11)}{4+7},\dfrac{4y_2+7(7)}{4+7})=(-3,15)}

\mathsf{(\dfrac{4x_2-77}{11},\dfrac{4y_2+49}{11})=(-3,15)}

\implies\mathsf{\dfrac{4x_2-77}{11}=-3\;\;\&\;\;\dfrac{4y_2+49}{11}=15}

\implies\mathsf{4x_2-77=-33\;\;\&\;\;4y_2+49=165}

\implies\mathsf{4x_2=77-33\;\;\&\;\;4y_2=165-49}

\implies\mathsf{4x_2=44\;\;\&\;\;4y_2=116}

\implies\mathsf{x_2=\dfrac{44}{4}\;\;\&\;\;y_2=\dfrac{116}{4}}

\implies\mathsf{x_2=11\;\;\&\;\;y_2=29}

\therefore\textsf{The coordinates of B are(11,29)}

Find more:

Find the ratio in which the line segment joining the points (-3,10), and(6,-8) is divided by(-1,6)​

https://brainly.in/question/17730071

Find the ratio in which line segment joining (-3,10) and (6,-8) is divided by y axis also find the point of division

https://brainly.in/question/20781027

Similar questions