Math, asked by RahulTile, 1 year ago

point T is in the interior of rectangle PQRS prove that TS + TQ = TP + TR

Answers

Answered by sk940178
2

Answer:

(TS+TQ)= (TP+TR).... proved

Step-by-step explanation:

Let us assume that any rectangle PQRS(a×b) is placed on the coordinate plane in such a way that the coordinates of P(0,0), Q(a,0), R(a,b) and S(0,b) respectively. (See the diagram)

Also assume an interior point T(h,k) to the rectangle on the coordinate plane.

Then, we can have

TS=\sqrt{h^{2}+(k-b)^{2}} ...... (1)

TQ=\sqrt{(h-a)^{2}+k^{2}} ...... (2)

TP=\sqrt{h^{2}+k^{2}} ...... (3)

and, TR=\sqrt{(h-a)^{2}+(k-b)^{2}} ..... (4)

We have to prove that, TS+TQ= TP+TR

Now, (TS+TQ)^{2}=(\sqrt{h^{2}+(k-b)^{2}}+\sqrt{(h-a)^{2}+k^{2}})^{2}

(TS+TQ)^{2}= h^{2}+k^{2}+(h-a)^{2}+(k-b)^{2}+2\sqrt{(h^{2}+(k-b)^{2})((h-a)^{2}+k^{2}  )  }

(TS+TQ)^{2} =h^{2}+k^{2}+(h-a)^{2}+(k-b)^{2}+2\sqrt{h^{2}(h-a^{2})+h^{2}k^{2}+k^{2}(k-b)^{2}+(h-a)^{2}(k-b)^{2}} .... (5)

Similarly, (TP+TR)^{2}=(\sqrt{h^{2}+k^{2}}+\sqrt{(h-a)^{2}+(k-b)^{2}})^{2}

(TP+TR)^{2}=h^{2}+k^{2}+(h-a)^{2}+(k-b)^{2}+2\sqrt{h^{2}(h-a^{2})+h^{2}k^{2}+k^{2}(k-b)^{2}+(h-a)^{2}(k-b)^{2}} .... (6)

So, from (5) and (6) it is clear that,

(TS+TQ)^{2}=(TP+TR)^{2}

(TS+TQ)= ±(TP+TR)

(TS+TQ)= (TP+TR) {Since sum of two lengths can not be negative}

Hence, proved.

Attachments:
Similar questions