Math, asked by aniketkumar083, 4 months ago

point
The foci of the hyperbola 9y2 - 4x2 = 36, are:-

Answers

Answered by amansharma264
14

EXPLANATION.

Equation of Hyperbola

 \sf \:  \implies \: 9 {y}^{2}  - 4 {x}^{2} = 36 \\  \\  \sf \:  \implies \:  \frac{ {9y}^{2} }{36}  \:  -  \:  \frac{4 {x}^{2} }{36}  =  1 \\  \\ \sf \:  \implies \:  \frac{ {y}^{2} }{4}  \:  -  \:  \frac{ {x}^{2} }{9}  = 1 \\  \\ \sf \:  \implies \:  \frac{ {x}^{2} }{9}  \:  -  \:  \frac{ {y}^{2} }{4}  =  - 1

\sf \:  \implies(1) = centre \:  = (0,0) \\  \\  \sf \:  \implies \: vertex \:  = (0,b) \:  \: and \: (0, - b) \\  \\  \sf \:  \implies \: vertex \:  = (0,2) \: and \: (0, - 2)

 \sf \:  \implies \:eccentricity =  {a}^{2}   =  {b}^{2}( {e}^{2}  - 1) \\  \\  \sf \:  \implies \:9 = 4( {e}^{2}  - 1) \\  \\\sf \:  \implies \:9 = 4 {e}^{2}  - 4 \\  \\  \sf \:  \implies \:13 = 4 {e}^{2}  \\  \\ \sf \:  \implies \: \:  {e}^{2}  =  \frac{13}{4}  =  \frac{ \sqrt{13} }{2}

\sf \:  \implies \:foci \:  = (0,be) \: and \: (0, - be) \\  \\ \sf \:  \implies \: foci \:  = (0,2 \times  \frac{ \sqrt{13} }{2} ) \: and \: (0, - 2 \times  \frac{ \sqrt{13} }{2} ) \\  \\  \sf \:  \implies \: foci \: = (0, \sqrt{13} ) \: and \: (0, -  \sqrt{13})

 \sf \:  \implies \: equation \: of \: directrix \:  = y \:  =  \dfrac{b}{e} and \: y \:  =  \dfrac{ - b}{e}  \\  \\ \sf \:  \implies \: equation \: of \: directrix \:  = y \:  =  \frac{2}{ \sqrt{13} } \times 2 \:  \: and \:  \: y \:  =  \frac{ - 2}{ \sqrt{13} }   \times 2 \\  \\ \sf \:  \implies \: equation \: of \: directrix \: = y \:  =  \frac{4}{ \sqrt{13} }  \:  \: and \:  \: y \:  =  \frac{ - 4}{ \sqrt{13} }

\sf \:  \implies \: length \: of \: transverse \: axis \:  = 2b \:  = 2(2) = 4 \\  \\ \sf \:  \implies \: length \: of \: conjugate \: axis \: 2a \:  = 2(3) = 6 \\  \\ \sf \:  \implies \: length \: of \: latus \: rectum \:  =  \frac{2 {a}^{2} }{b}  =  \frac{2(3) {}^{2} }{2}  = 9

Similar questions