Math, asked by ellatiene40yyo20, 1 year ago

Points A(-2, 4), B(1, 3), C(4, -1) and D form a parallelogram. What are the coordinates of D?

Answers

Answered by MaheswariS
0

Answer:

\text{The fourth vertex is (1,0)}

Step-by-step explanation:

\text{Given points are A(-2, 4), B(1, 3), C(4, -1)}

\text{Let the fourth vertex D be (x,y)}

\boxed{\begin{minipage}{8cm}We know that diagonals of a parallelogram bisect each other\end{minipage}}

\implies\,\text{Midpoint of diagonal AC }=\text{Midpoint of diagonal BD }

Using midpoint formula,

\textbf{The midpoint of the line joining }(x_1,y_1)\text{ and }(x_2,y_2)\textbf{ is }\bf(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})

\implies\,(\frac{-2+4}{2},\frac{4-1}{2})=(\frac{1+x}{2},\frac{3+y}{2})

\implies\,(\frac{2}{2},\frac{4-1}{2})=(\frac{1+x}{2},\frac{3+y}{2})

\implies\,(1,\frac{3}{2})=(\frac{1+x}{2},\frac{3+y}{2})

\text{Equating the corresponding coordinates}

1=\frac{1+x}{2}

\implies\,2=1+x

\implies\,x=1

\implies\,\frac{3}{2}=\frac{3+y}{2}

\implies\,3=3+y

\implies\,y=0

\therefore\text{The fourth vertex is (1,0)}

Similar questions