Math, asked by kirtigunjal1383, 1 year ago

Points A(3,1) B(12,-2) C(0,2) cannot be the vertices of a triangle

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{A(3,1), B(12,-2) and C(0,2)}

\underline{\textbf{To prove:}}

\textsf{A,B and C cannot be vertices of a triangle}

\underline{\textbf{Solution:}}

\begin{array}{rl}\mathsf{Slope\;of\;AB}&\mathsf{=\dfrac{y_2-y_1}{x_2-x_1}}\\\\&\mathsf{=\dfrac{-2-1}{12-3}}\\\\&\mathsf{=\dfrac{-3}{9}}\\\\&\mathsf{=\dfrac{-1}{3}}\end{array}

\begin{array}{rl}\mathsf{Slope\;of\;BC}&\mathsf{=\dfrac{y_2-y_1}{x_2-x_1}}\\\\&\mathsf{=\dfrac{2+2}{0-12}}\\\\&\mathsf{=\dfrac{4}{-12}}\\\\&\mathsf{=\dfrac{-1}{3}}\end{array}

\implies\mathsf{Slope\;of\;AB=Slope\;of\;BC}

\implies\textsf{The points A,B and C are collinear}

\textbf{Hence they cannot be vertices of any triangle}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{7cm}$\\\mathsf{Slope\;of\;line\;joining\;the\;points\;(x_1,y_1)\;and}\\\\\mathsf{(x_2,y_2)\;is\;\;\;m=\dfrac{y_2-y_1}{x_2-x_1}}\\$\end{minipage}}

#SPJ3

Similar questions