Math, asked by goodman88, 1 month ago

points d and e trisect the hypotenus bc of a right - angled traingle abc with angle = 90⁰. if ad = 7 and ae = 9 , find de ².​

Answers

Answered by theroyalstar79
2

Answer:

please mark me as brainlist

Step-by-step explanation:

Since D and E are the points of trisection of BC therefore BD=DE=CE

Let BD=DE=CE=x.

Then BE=2x and BC=3x

In rt △ABD,

AD

2

=AB

2

+BD

2

=AB

2

+x

2

(i)

In rt △ABE,

AE

2

=AB

2

+BE

2

=AB

2

+4x

2

(ii)

In rt △ABC,

AC

2

=AB

2

+BC

2

=AB

2

+9x

2

(iii)

Now, 8AE

2

−3AC

2

−5AD

2

=8(AB

2

+4x

2

)−3(AB

2

+9x

2

)−5(AB

2

+x

2

)

=0

Therefore, 8AE

2

=3AC

2

+5AD

2

Answered by XxaditiyaxX
1

Answer:

Since D and E are the points of trisection of BC therefore BD=DE=CE

Let BD=DE=CE=x. 

Then BE=2x and BC=3x

In rt △ABD,

AD2=AB2+BD2=AB2+x2          (i)

In rt △ABE

AE2=AB2+BE2=AB2+4x2         (ii)

In rt △ABC,

AC2=AB2+BC2=AB2+9x2         (iii)

Now, 8AE2−3AC2−5AD2

   =8(AB2+4x2)−3(AB2+9x2)−5(AB2+x2)

   =0

Therefore, 8AE2=3AC2

Similar questions