points d e and f are the midpoints of the sides of triangle abc .point g is the centroid of triangle abc show that point g is the centroid os triangle def also
Answers
I am proving by coordinate geometry .
If you want geometric proof do comment !
In Δ ABC ,
Let A be x₁ , y₁
Let B be x₂ , y₂
Let C be x₃ , y₃
Mid point formula says :
D = x = ( x₁ + x₂ ) / 2 , y = ( y₁ + y₂ ) / 2
E = x = ( x₂ + x₃ ) / 2 , y = ( y₂ + y₃ ) / 2
F = x = ( x₁ + x₃ ) / 2 , y = ( y₁ + y₃ ) / 2
Centroid of Δ ABC
x = ( x₁ + x₂ + x₃ ) / 3
y = ( y₁ + y₂ + y₃ ) / 3
Centroid of Δ DEF
x = [ ( x₁ + x₂ ) / 2 + ( x₁ + x₃ ) / 2 + ( x₂ + x₃ ) / 2 ] / 3
= > x = [ x₁ / 2 + x₂ / 2 + x₁ / 2 + x₃ / 2 + x₂ / 2 + x₃ / 2 ] / 3
Use a / 2 + a / 2 = a
= > x = [ x₁ + x₂ + x₃ ] / 3
Similarly :
y = [ ( y₁ + y₂ ) / 2 + ( y₁ + y₃ ) / 2 + ( y₂ + y₃ ) / 2 ] / 3
= > y = [ y₁ / 2 + y₂ / 2 + y₁ / 2 + y₃ / 2 + y₂ / 2 + y₃ / 2 ] / 3
Use a / 2 + a / 2 = a
= > y = [ y₁ + y₂ + y₃ ] / 3
Hence the coordinates of the centroid of Δ ABC is the same as the centroid of Δ DEF.
Therefore it is the same point !
[ P.R.O.V.E.D ]
_______________________________________________________
In Δ ABC ,
Let A be x₁ , y₁
Let B be x₂ , y₂
Let C be x₃ , y₃
Mid point formula says :
D = x = ( x₁ + x₂ ) / 2 , y = ( y₁ + y₂ ) / 2
E = x = ( x₂ + x₃ ) / 2 , y = ( y₂ + y₃ ) / 2
F = x = ( x₁ + x₃ ) / 2 , y = ( y₁ + y₃ ) / 2
Centroid of Δ ABC
x = ( x₁ + x₂ + x₃ ) / 3
y = ( y₁ + y₂ + y₃ ) / 3
Centroid of Δ DEF
x = [ ( x₁ + x₂ ) / 2 + ( x₁ + x₃ ) / 2 + ( x₂ + x₃ ) / 2 ] / 3
= > x = [ x₁ / 2 + x₂ / 2 + x₁ / 2 + x₃ / 2 + x₂ / 2 + x₃ / 2 ] / 3
Use a / 2 + a / 2 = a
= > x = [ x₁ + x₂ + x₃ ] / 3
Similarly :
y = [ ( y₁ + y₂ ) / 2 + ( y₁ + y₃ ) / 2 + ( y₂ + y₃ ) / 2 ] / 3
= > y = [ y₁ / 2 + y₂ / 2 + y₁ / 2 + y₃ / 2 + y₂ / 2 + y₃ / 2 ] / 3
Use a / 2 + a / 2 = a
= > y = [ y₁ + y₂ + y₃ ] / 3
Hence the coordinates of the centroid of Δ ABC is the same as the centroid of Δ DEF.