Math, asked by kvtulsi0505, 7 months ago


Points E (1, 3), F (9, 4) and G (2, 9) form a triangle. What is the area of ΔEFG ?
The area of ΔEFG = ____ square units

Please answer this question

Answers

Answered by VishnuPriya2801
48

Answer:-

Given:

E(1 , 3) , F(9 , 4) , G(2 , 9) form a triangle.

We know that,

Area of a ∆ formed with the points (x₁ , y₁) , (x₂ , y₂) & (x₃ , y₃) is :

 \implies  \boxed{\sf \: Area \: of \: the \:  \triangle =  \dfrac{1}{2}  \begin{vmatrix} \sf \: x _{1} - x _{2}& \sf \: x _{1} - x _{3} \\  \\ \sf \: y _{1} - y _{2}& \sf \: y _{1} - y _{3} \end{vmatrix}}

Let,

  • x₁ = 1

  • x₂ = 9

  • x₃ = 2

  • y₁ = 3

  • y₂ = 4

  • y₃ = 9

 \implies{\sf \: Area \: of  \:  \triangle EFG \: =  \dfrac{1}{2}  \begin{vmatrix} \sf \: 1 - 9& \sf \: 1 -  2\\  \\ \sf \: 3 - 4& \sf \: 3 - 9 \end{vmatrix}} \\  \\  \implies{\sf \: Area \: of  \:  \triangle EFG \: =  \dfrac{1}{2}  \begin{vmatrix} \sf \:  - 8& \sf \:  - 1 \\  \\ \sf \:  - 1& \sf \:  - 6 \end{vmatrix}} \\  \\ \implies\sf \: Area \: of  \:  \triangle EFG \: =  \dfrac{1}{2}  |( - 8)( - 6) - ( - 1)( - 1)|  \\  \\ \implies\sf \: Area \: of  \:  \triangle EFG \: =  \dfrac{1}{2}  |48 - 1|  \\  \\ \implies \boxed{\sf \: Area \: of  \:  \triangle EFG \: =  \dfrac{47}{2}   \:  \: unit ^{2} }

Similar questions