points for joint family is better than nuclear family
Answers
Answer:
Let assume that ABCD be the sheet whose
Length, AB = 40 cm
Width, BC = 30 cm
Now, Further given that a border of 3 cm width is printed on a sheet of paper.
Let assume that PQRS be the area of sheet after the 3 cm border.
So,
Length, PQ = 40 - 3 × 2 = 40 - 6 = 34 cm
Breadth, QR = 30 - 3 × 2 = 30 - 6 = 24 cm
Now,
\begin{gathered} \red{\rm \: Area_{(Border)} = Area_{(Rectangle \: ABCD)} - Area_{(Rectangle \: PQRS)}} \\ \end{gathered}
Area
(Border)
=Area
(RectangleABCD)
−Area
(RectanglePQRS)
\begin{gathered}\rm \: = \: AB \times BC - PQ \times QR \\ \end{gathered}
=AB×BC−PQ×QR
\begin{gathered}\rm \: = \: 40 \times 30 - 34 \times 24 \\ \end{gathered}
=40×30−34×24
\begin{gathered}\rm \: = \: 1200 - 816 \\ \end{gathered}
=1200−816
\begin{gathered}\rm \: = \: 384 \: {cm}^{2} \\ \\ \end{gathered}
=384cm
2
So,
\begin{gathered}\bf \: Area_{(Border \: of \: 500 \: sheets)} = 500 \times 384 = 192000 \: {cm}^{2} \\ \\ \end{gathered}
Area
(Borderof500sheets)
=500×384=192000cm
2
Further given that,
\begin{gathered}\rm \: Cost \: of \: 100 \: {cm}^{2} \: = \: 50 \: paisa \\ \end{gathered}
Costof100cm
2
=50paisa
\begin{gathered}\rm \: Cost \: of \: 192000 \:{cm}^{2} = 192000 \times \frac{50}{100} = 96000 \: paisa \\ \end{gathered}
Costof192000cm
2
=192000×
100
50
=96000paisa
\begin{gathered}\bf\implies \: Cost \: of \: 192000 \:{cm}^{2} \: = \: Rs \: 960 \\ \\ \end{gathered}
⟹Costof192000cm
2
=Rs960