points p, q and r are the mid point of side BC,CA and AB Respectively of ∆ABC and they form ∆PQR. X is the point intersection of line segments PR and BQ. Y is the point of intersection line segments CR and PQ.prove that. XY=1/4BC.
Attachments:
Answers
Answered by
2
P,Q and R are respectively the mid points of sides BC, CA and AB of triangle ABC. PR and BQ meet at X. CR and PQ meet at Y. prove that XY=1/4BC
Answer
Given
ABC is a Triangle.
P is the m.p of BC
Q is the m.p of CA
R is the m.p of AB
To prove
XY = BC
Proof
In ΔABC
R is the midpoint of AB.
Q is the midpoint of AC.
∴ By Midpoint Theorem,
RQ║BC
RQ║BP → 1 [Parts of Parallel lines]
RQ = BC → 2
Since P is the midpoint of BC,
RQ = BP → 3
From 1 and 3,
BPQR is a Parallelogram.
BQ and PR intersect at X
Similarly,
PCQR is a Parallelogram.
PQ and CR intersect at Y.
X and Y are Midpoints of sides PR and PQ respectively.
In ΔPQR
X is the midpoint of PR
Y is the midpoint of PQ
∴ By Midpoint Theorem,
XY = RQ
From 3,
XY = + BC
XY = BC
Answer
Given
ABC is a Triangle.
P is the m.p of BC
Q is the m.p of CA
R is the m.p of AB
To prove
XY = BC
Proof
In ΔABC
R is the midpoint of AB.
Q is the midpoint of AC.
∴ By Midpoint Theorem,
RQ║BC
RQ║BP → 1 [Parts of Parallel lines]
RQ = BC → 2
Since P is the midpoint of BC,
RQ = BP → 3
From 1 and 3,
BPQR is a Parallelogram.
BQ and PR intersect at X
Similarly,
PCQR is a Parallelogram.
PQ and CR intersect at Y.
X and Y are Midpoints of sides PR and PQ respectively.
In ΔPQR
X is the midpoint of PR
Y is the midpoint of PQ
∴ By Midpoint Theorem,
XY = RQ
From 3,
XY = + BC
XY = BC
Attachments:
anu3690:
wrong proving because they are prove XY=1/4 BC
Similar questions