Math, asked by chetanatakarkhede4, 3 months ago

polar form of (1+I)^2/ 1-i​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

z =  \frac{(1 + i)^{2} }{(1 - i)}  \\

 =  \frac{1  +  {i}^{2}  +  2i }{1 - i}  \\

 =  \frac{2i}{1 - i}  \\

 =  \frac{2i(1 + i)}{1 + 1}  \\

 =  \frac{2i(1 + i)}{2}  \\

 = i +  {i}^{2}

 =  - 1 + i

So,

z =  - 1 + i

z =  \sqrt{2} (  - \frac{1}{ \sqrt{2} }  +  \frac{i}{ \sqrt{2} })

 z =  \sqrt{2} ( \cos( \frac{3\pi}{4} )  + i \sin( \frac{3\pi}{4} )) \\

Similar questions