Polynomial f x is equal to ax cube + 9 x square + 4 x minus 8 when divided by x + 3 leaves -20 as the remainder find the value of a
Answers
Answer:
Since (x-2) is a factor of polynomial 2x3+ax2+bx-14, we have
2(2)3+a(2)2+b(2)-14=0
⇒ 16+4a+2b-14=0
⇒4a+2b+2=0
⇒2a+b+1=0
⇒2a+b=-1 1)
On dividing by (x-3), the polynomial 2x3+ax2+bx-14 leaves remainder 52,
⇒2(3)3+a(3)2+b(3)-14=52
⇒54+9a+3b-14=52
⇒9a+3b+40=52
⇒9a+3b=12
⇒3a+b=4 (2)
Subtracting (1) and (2), we get
a=5
substituting a =5 in (1), we get
2×5+b=-1
⇒10+b=-1
⇒b=-11
Hence , a=5 and b=-11.
The Remainder is same whne (x−3) divides (x3−px2+x+6) & (2x3−x2−(p+3)x−6)
∴ Using Remainder Theorem
R(3)=x3−px2+x+6
=33−p(32)+3+6
=27−9p+3
=36−9p
R(3)=2x3−x2−(p+3)x−6
=2(33)−32−(p+3)3−6
=2×27−9−3p−9−6
=54−24−3p
=30−3p
Remainder are same
∴36−9p=30−3p
36−30=−3p+9p
6=6p
1=p
I hope you understand MARK ME AS BRAINLIEST