Math, asked by simrakeshari1213, 6 months ago

polynomial x^3_1^3_10x^2_53x_41 ke factorisation

Answers

Answered by sujitbangal442
0

Answer:

x3−10x2−53x−42

let p(x)=x3−10x2−53x−42

let x=−1

p(−1)=(−1)3−10(−1)2−53(−1)−42

              =−1−10+53−42

              =0

Hence (x+1) is factor of polynomial

p(x)=x3+x2−11x2−42x−11x−42

⇒x2(x+1)−11x(x+1)−42(x+1)

⇒(x+1)(x2−11x−42)

x2−11x−42=x2−14x+3x−42

                        =x(x−14)+3(x−14)

                        =(x+3)(x−14)

∴p(x)=(x+1)(x+3)(x−14)

Similar questions