Math, asked by Anonymous, 5 months ago

Pooja deposited Rs. 6000 in a bank which pays interest at the rate of 10% p.a. compounded
quarterly, find the interest due to Pooja after 1 year?​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \: Given -   \begin{cases} &\sf{Principal \:  =  \: Rs.  \: 6000} \\ &\sf{ Rate \:  = 10 \: \% \: per \: annum}\\ &\sf{Time \:  =  \: 1 \: year} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find  -  \begin{cases} &\sf{Interest \: after \: 1 \: year}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Here,

Given that

  • Principal, P = Rs 6000

  • Rate of Interest, R = 10 % per annum

  • Time, n = 1 year

~ Using formula of Amount when interest is compounded quarterly,

{\sf{\star  \boxed{ \green{ \rm \: Amount \:  =  \: P(1+ \dfrac{R}{400})^{4n}}}}}

where,

  • P denotes Principal

  • R denotes Rate per annum

  • n denotes time in years

 \rm :  \implies \:Amount \:  =  \: 6000 { \bigg(1 + \dfrac{10}{400} \bigg) }^{4 \times 1}

 \rm :  \implies \:Amount \:  =  \: 6000 { \bigg(1 + \dfrac{1}{40} \bigg) }^{4 }

 \rm :  \implies \:Amount \:  =  \: 6000 { \bigg(\dfrac{40 + 1}{40} \bigg) }^{4 }

 \rm :  \implies \:Amount \:  =  \: 6000 { \bigg(\dfrac{41}{40} \bigg) }^{4 }

 \boxed{ \purple{ \rm :  \implies \:Amount \:  =  \: Rs.  \: 6622. \: 88}}

Now, Compound interest is evaluated by

{\sf{\star \:  \boxed{ \pink{ \rm \:  CI \: = Amount \: - Principal}}}}

 \rm :  \implies \:CI \:  =  \: 6622.88 \:  -  \: 6000

 \boxed{ \pink{ \rm :  \implies \:CI \:  =  \: Rs.  \: 622. \: 88}}

Similar questions