Popular Math Problem
Evaluate 100^2 - 99^2 + 98^2 - 97^2 + 96^2 - 95^2 + ... + 2^2 - 1^2 =?
Answers
Answer:
Value of 100²-99²+98²-97²+96²-95²+....+2²-1²=5050
Step-by-step explanation:
Given 100²-99²+98²-97²+96²-95²+....+2²-1²
= (100²-99²)+(98²-97²)+(96²-95²)+...+(2²-1²)
= (100+99)(100-99)+(98+97)(98-97)+(96+95)(96-95)+....+(2+1)(2-1)
/* By algebraic identity :
a²-b² = (a+b)(a-b) */
= (100+99)1+(98+97)1+(96+95)1+....+(2+1)1
= 100+99+98+97+96+95+....+2+1
Therefore,
Value of 100²-99²+98²-97²+96²-95²+....+2²-1²=5050
•••♪
Answer:
5050
Step-by-step explanation:
⇒ 100² - 99² + 98² - 97² + 96² - 95² + ...2² - 1²
⇒ (100² - 99²) + (98² - 97²) + (96² - 95²) + ... (2² - 1²)
Using a² - b² = (a + b)(a - b)
⇒ (199) + (195) + (191) + ... 3
This forms an arithematic series in which a = 199 and l = 3, and n = 100/2 = 50.
∴ S = (n/2) [1st term + last term]
= (50/2) [199 + 3]
= 5050
Hence, required sum is 5050.