POQ is a straight line and the ray OR
stands on it. If angle POR = (X + 45)° and
angle QOR = (2x – 75), find the value of
angle POR and angle QOR. *
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given that POQ is a straight line.
The ray OR stands on it.
So <POR+ <QOR=180°( linear pair)
=> x+45°+2x-75°=180°
=> 3x-30°=180°
=> 3x=180°+30°
=> 3x=210°
=> x=210°/3=70°
So <POR=x+45°=70°+45°=115°
And<QOR=2×70°-75°=140°-75°=65°
Thus, <POR=115° and <QOR=65°.
Hope you got it and it is helpful to you
Answered by
1
Step-by-step explanation:
According to question,
angle POR + angle QOR = 180⁰
(x + 45⁰) + (2x - 75⁰) = 180⁰
x + 2x + 45 - 75 = 180⁰
3x - 30 = 180⁰
3x = 180 + 30 = 210
x = 210 ÷ 3 = 70⁰
Therefore, angle [POR = x + 45⁰ = 70 + 45 = 115⁰]
angle [QOR = 2x - 75 = (2 × 70) - 75⁰ = 140 - 75 = 65⁰]
Similar questions