Math, asked by malleshbadiger, 4 months ago

POS
tag?
4. Find the ratio in which the line segment joining the points (-3, 10) and (6,- 8) is divided
by (-1,6).​

Answers

Answered by ShírIey
68

Appropriate Question:

  • Find the ratio in which the line segment joining the points (-3, 10) and (6,- 8) is divided by (-1,6).

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

DIAGRAM:

⠀⠀

\setlength{\unitlength}{14mm}\begin{picture}(7,5)(0,0)\thicklines\put(0,0){\line(1,0){5}}\put(5.1, - 0.3){\sf B}\put( - 0.2, - 0.3){\sf A}\put(5.2, 0){\sf (6, -8)}\put( - 0.7, 0){\sf (-3,10)}\put(2.3, 0.2){\sf C}\put(2.2, - 0.3){\sf (-1,6)}\put(5, 0){\circle*{0.1}}\put(2.4, 0){\circle*{0.1}}\put(0, 0){\circle*{0.1}}\put(1,0.2){\sf k}\put(3.5, 0.2){\sf 1}\end{picture}⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

❒ Let the given points be A(-3,10), B(6,-8) and C(-1,6).

⠀⠀⠀⠀

Given that,

  • The point C(-1, 6) divide internally the line segment joining points A(-3,10) and B(6,-8) in the ratio.

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{Using\:section\:formula\::}}\\ \\

⠀⠀

\dag\:\boxed{\sf{\pink{x = \dfrac{m_{1}x_{2} +m_{2}x_{1}}{m_{1} + m_{2}}}}}

\underline{\bf{\dag} \:\mathfrak{Substituting\: values \; now\:  :}}

:\implies\sf -1 = \dfrac{6k -3}{k + 1} \\\\\\:\implies\sf -1 \Big(k + 1 \Big) = 6k - 3  \\\\\\:\implies\sf  -k -1 = 6k - 3 \\\\\\:\implies\sf  -k -6k = -3 + 1 \\\\\\:\implies\sf  -7k = -2 \\\\\\:\implies\sf k = \dfrac{-7}{-2} \\\\\\:\implies{\underline{\boxed{\frak{\purple{k = \dfrac{7}{2}}}}}}\:\bigstar

\therefore\:{\underline{\sf{Hence, \ the \ required \ ratio \: \ is\: \bf{2:7}.}}}

Answered by DARLO20
141

\Large{\orange{\underline{\textsf{\textbf{QUESTION\::}}}}} \\

Find the ratio in which the line segment joining the points (-3 , 10) and (6 , - 8) is divided by (-1 , 6).

\Large{\green{\underline{\textsf{\textbf{Step-by-step\:Explanations\::}}}}} \\

Gɪᴠᴇɴ :

  • The points (-3 , 10) & (6 , -8) of a line segment is divided by a point (-1 , 6)

L,

As sʜɴ ɪɴ ʜ ʜɴ ɪɢʀ,

  1. P(-3 , 10)
  2. Q(-1 , 6)
  3. O(6 , -8)

Tᴏ Fɪɴᴅ :

  • The ratio in which the line segments is joining the points P & Q.

Cʟʟɪɴ :

Lᴇᴛ,

  • The ratio be k : 1.

Hɴ,

  • m = k

  • m = 1

W ɴ ʜ,

➣ Section formula is

\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{x\:=\:\dfrac{m_1\:x_1\:+\:m_2\:x_2}{m_1\:+\:m_2}\:}}}}}} \\

Wʜʀ,

  • x = -3

  • y = 10

  • x = 6

  • y = -8

  • x = -1

  • y = 6

:\implies\:\:\rm{-1\:=\:\dfrac{k\times{6}\:+\:1\times{-3}}{k\:+\:1}\:} \\

:\implies\:\:\rm{-1\:=\:\dfrac{6k\:-\:3}{k\:+\:1}\:} \\

:\implies\:\:\rm{6k\:-\:3\:=\:-(k\:+\:1)\:} \\

:\implies\:\:\rm{6k\:-\:3\:=\:-k\:-\:1\:} \\

:\implies\:\:\rm{6k\:+\:k\:=\:3\:-\:1\:} \\

:\implies\:\:\rm{7k\:=\:2\:} \\

:\implies\:\:\rm{k\:=\:\dfrac{2}{7}\:} \\

Hᴇɴᴄᴇ,

➛ The ratio is k : 1 = \bf{\dfrac{2}{7}\::\:1}

➣ Multiple 7 on both side, we get

\rm{\Big(\dfrac{2}{7}\times{7}\Big)\::\:(1\times{7})}

\bf\pink{2\::\:7} \\

\Large\bf\purple{Therefore,}

The ratio in which the line segment joining the points (-3, 10) & (6 ,- 8) is 2 : 7.

Attachments:
Similar questions