Physics, asked by Dipok566, 4 months ago

Position of a particle moving along x-axis is given by x=2+8t-4t*2. the distance travelled by the particle from t=0 to t=2 is​

Answers

Answered by Anonymous
10

\dag\:\underline{\sf AnsWer :} \\

Here we are asked to find the distance travelled by the particle from t = 0 to t = 2.

:\implies \sf Velocity = \dfrac{Displacement}{time} \\  \\

Differentiating w.r.t to t

:\implies \sf v = \dfrac{dx}{dt} \\  \\

:\implies \sf v = \dfrac{d}{dt}(2 + 8t - 4 {t}^{2})\\  \\

\bigstar\:\sf Rule =  \dfrac{dx}{dt} =n x^{n - 1} \\  \\

:\implies \sf v(t) =0 + 8-2 \times  4 t\\  \\

:\implies \sf v(t) =  8-8 t\\  \\

Now,

\dashrightarrow\:\:\displaystyle \sf Distance  = \int\limits_{t_{1}}^{t_{2}} v(t) \, dt \\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \int\limits_{0}^{2} (8 - 8t) \, dt \\  \\

\bigstar\:\sf Rule =  \displaystyle \sf \int\limits  {x}^{n}  \, dx =  \dfrac{ {x}^{n + 1} }{n + 1} \\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \Bigg[  8t -\dfrac{8 {t}^{1 + 1}}{1 + 1}  \Bigg]_{0} ^{2} \\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \Bigg[  8t -\dfrac{8 {t}^{2}}{2}  \Bigg] _{0} ^{2}\\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \Bigg[  8(2) -\dfrac{8 {(2)}^{2}}{2}  - 0 \Bigg]\\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \Bigg[ 16 -\dfrac{8  \times 4}{2}  - 0 \Bigg]\\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  = \Bigg[ 16 -\dfrac{16}{2}  \Bigg]\\  \\

\dashrightarrow\:\:\displaystyle \sf Distance  =  16 -8 \\  \\

\dashrightarrow\:\: \underline{ \boxed{\displaystyle \sf Distance  =  8 \: m}}\\  \\


Ataraxia: Nice! :D
Similar questions