positive integers x,y,z satisfy xy + z = 160.compute the smallest possible value of x+ yz.
Answers
Answered by
2
Answer:
the smallest possible value of x + yz. = 50
Step-by-step explanation:
Positive integers x, y, z satisfy xy +z = 160. Compute the smallest possible value of x + yz.
xy +z = 160
x, y, z are Positive integers
=> they can not be zero
158 + 2 = 160
158*1 + 2 = 160
x + yz = 158 + (1*2) = 160
79*2 + 2 = 160
x + yz = 79 + (2*2) = 83
156 + 4 = 160
156*1 + 4 = 160
x + yz = 156 + (1*4) = 160
78*2 + 4 = 160
x + yz = 78 + (2*4) = 86
52*3 + 4 = 160
x + yz =52 + (3*4) = 64
39*4 + 4 = 160
x + yz =39 + (4*4) = 55
26*6 + 4 = 160
x + yz =26 + (6*4) = 50
13*12 + 4 = 160
x + yz =13 + (12*4) = 61
the smallest possible value of x + yz. = 50
Similar questions