Math, asked by arshasat14, 11 months ago

Positive integers x, y, z satisfy xy + z = 160. Compute the smallest possible value of x + yz

Answers

Answered by MarshmellowGirl
22

✿━━━━@Mg━━━━✿

\boxed{Explained\:Answer}

______________________________

✿━━━━@Mg━━━━✿

\mathfrak{\huge{\red{ANSWER}}}

158 + 2 = 160

158*1 + 2 = 160

x + yz = 158 + (1*2) = 160

79*2 + 2 = 160

x + yz = 79 + (2*2) = 83

156 + 4 = 160

156*1 + 4 = 160

x + yz = 156 + (1*4) = 160

78*2 + 4 = 160

x + yz = 78 + (2*4) = 86

52*3 + 4 = 160

x + yz =52 + (3*4) = 64

39*4 + 4 = 160

x + yz =39 + (4*4) = 55

26*6 + 4 = 160

x + yz =26 + (6*4) = 50

13*12 + 4 = 160

x + yz =13 + (12*4) = 61

the smallest possible value of x + yz. = 50

Answered by prakharshweta109251
1

╓┈♔◦☓◦☙◦♔◦☙◦☓◦♔┈╖

158 + 2 = 160

158*1 + 2 = 160

x + yz = 158 + (1*2) = 160

79*2 + 2 = 160

x + yz = 79 + (2*2) = 83

156 + 4 = 160

156*1 + 4 = 160

x + yz = 156 + (1*4) = 160

78*2 + 4 = 160

x + yz = 78 + (2*4) = 86

52*3 + 4 = 160

x + yz =52 + (3*4) = 64

39*4 + 4 = 160

x + yz =39 + (4*4) = 55

26*6 + 4 = 160

x + yz =26 + (6*4) = 50

13*12 + 4 = 160

x + yz =13 + (12*4) = 61

the smallest possible value of x + yz. = 50

╙┈♔◦☓◦☙◦♔◦☙◦☓◦♔┈╜

Similar questions