Positive integers x, y, z satisfy xy + z = 160. Compute the smallest possible value of x + yz
Answers
Answered by
22
✿━━━━@Mg━━━━✿
______________________________
✿━━━━@Mg━━━━✿
158 + 2 = 160
158*1 + 2 = 160
x + yz = 158 + (1*2) = 160
79*2 + 2 = 160
x + yz = 79 + (2*2) = 83
156 + 4 = 160
156*1 + 4 = 160
x + yz = 156 + (1*4) = 160
78*2 + 4 = 160
x + yz = 78 + (2*4) = 86
52*3 + 4 = 160
x + yz =52 + (3*4) = 64
39*4 + 4 = 160
x + yz =39 + (4*4) = 55
26*6 + 4 = 160
x + yz =26 + (6*4) = 50
13*12 + 4 = 160
x + yz =13 + (12*4) = 61
the smallest possible value of x + yz. = 50
Answered by
1
╓┈♔◦☓◦☙◦♔◦☙◦☓◦♔┈╖
158 + 2 = 160
158*1 + 2 = 160
x + yz = 158 + (1*2) = 160
79*2 + 2 = 160
x + yz = 79 + (2*2) = 83
156 + 4 = 160
156*1 + 4 = 160
x + yz = 156 + (1*4) = 160
78*2 + 4 = 160
x + yz = 78 + (2*4) = 86
52*3 + 4 = 160
x + yz =52 + (3*4) = 64
39*4 + 4 = 160
x + yz =39 + (4*4) = 55
26*6 + 4 = 160
x + yz =26 + (6*4) = 50
13*12 + 4 = 160
x + yz =13 + (12*4) = 61
the smallest possible value of x + yz. = 50
╙┈♔◦☓◦☙◦♔◦☙◦☓◦♔┈╜
Similar questions