Math, asked by brainly575, 7 months ago

Positive value of the variable for which the given is satisfied \sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}.}

Answers

Answered by Anonymous
5

\;\;\underline{\textbf{\textsf{ Given:-}}}

\sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}}

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• What's the positive value of the variable?

\;\;\underline{\textbf{\textsf{ Solution  :-}}}

Given that,

:\implies{\sf{\dfrac{3-x^2}{8+x^2}=\dfrac{-3}{4}}} \\  \\  : \implies{\sf{ 4(3-x^2) =  - 3(8+x^2)}} \\  \\: \implies{\sf{ 12-4x^2 =  - 24 - 3x^2}} \\  \\: \implies{\sf{ 12 + 24=   - 3x^2+ 4x^2 }} \\  \\: \implies{\sf{36 = x ^2  }} \\  \\ : \implies{\sf{ \sqrt{36} = x }} \\  \\ : \implies{\sf{6 = x }} \\  \\  \\  \tt{ \green{ :\implies X = 6}}

\:\:\:\:\dag\bf{\underline{\underline \green{therefore :-}}}

Positive value of the variable = 6

____________________________________________

\;\;\underline{\textbf{\textsf{  Verification   :-}}}

We have ,

• Positive value of the variable = 6

\:\:\:\:\dag\bf{\underline \green{Putting\:the\:value:-}}

 : \implies{\sf{\dfrac{3-6^2}{8+6^2}=\dfrac{-3}{4}}} \\ \\ : \implies{\sf{ \dfrac{3-36}{8+36}=\dfrac{-3}{4}}} \\  \\ :\implies{\sf{ \dfrac{-33}{44}=\dfrac{-3}{4}}} \\  \\ : \implies{\sf{ \dfrac{-3}{4}=\dfrac{-3}{4}}}\\ \\: \implies{\boxed{\tt{LHS = RHS}}}

\:\:\:\:\dag\bf{\underline{\underline \green{Hence:-}}}

(Verified)

Similar questions