Math, asked by Rudra788, 1 month ago

Possible ordered pair(s) (x,y) on the complex plane satisfying the relation (4 - 31)/2 + (3 + 21xy = 472 - (3xy – 2yzji is/are – (4-3) 0 (-22) (6,9) (10,15)​

Attachments:

Answers

Answered by amitnrw
1

Given : (4 - 3i)x² + (3 + 2i)xy = 4y² - x²/2 +  (3xy – 2y²)i

To Find :  Possible ordered pair(s)  

(4,-3)

(-2,2)

(6,9)

(10,15)​

Solution:

(4 - 3i)x² + (3 + 2i)xy = 4y² - x²/2 +  (3xy – 2y²)i

=> 4x² - 3x²i  + 3xy  + 2xyi  = 4y² - x²/2  + 3xyi - 2y²i

=> 4x² + x²/2 - 4y² + 3xy   + i(-3x² + 2xy - 3xy + 2y²) = 0

=>  (9x²/2 - 4y² + 3xy )  + i(-3x²  + 2y² - xy ) = 0

9x²/2 - 4y² + 3xy = 0

=>  9x²  - 8y² + 6xy = 0   Eq1

   -3x²  + 2y²   - xy  = 0  Eq2

Eq1 + 6 * Eq2

=> -9x² + 4y² = 0

=>  4y²  = 9x²

=>  y = ±3x/2

Eq1 + 3 * Eq2

=> -2y² + 3xy = 0

=> y(-2y + 3x) = 0

=> y = 0  and y =   3x/2

Eq1 + 4 * Eq2

-3x² + 2xy = 0

=> -x(3x - 2y) = 9

=> x= 0  or  y = 3x/2

y = 3x/2

x = 4  => y = 6

x = - 2  => y = - 3

x = 6  => y = 9

x = 10 => y = 15

Hence ( 6 , 9) and ( 10 , 15) ordered pair(s)  satisfy the relation

Learn More:

Conjugate of the surd root 3 - root 5 is - Brainly.in

brainly.in/question/8946703

Every real number is a complex number. Proof - Brainly.in

brainly.in/question/18312643

Similar questions