Physics, asked by shettybhushan1, 10 months ago

potential energy of a particle performing liner S.H.M is 0.1π^2 x^2 joule .if mass of the the particle is 20g. find the frequency of S.H.M​

Answers

Answered by shadowsabers03
7

The potential energy of a particle executing SHM varies with displacement x as,

\longrightarrow\sf{U=\dfrac{1}{2}\,m\omega^2x^2}

where,

  • m = mass of the particle

  • ω = angular frequency

Here,

\longrightarrow\sf{U=0.1\pi^2x^2}

\longrightarrow\sf{\dfrac{1}{2}m\omega^2x^2=0.1\pi^2x^2}

Since \sf{m=20\ g=0.02\ kg,}

\longrightarrow\sf{\dfrac{1}{2}\times0.02\omega^2=0.1\pi^2}

\longrightarrow\sf{0.01\omega^2=0.1\pi^2}

From this we get,

\longrightarrow\sf{\dfrac{\omega^2}{\pi^2}=\dfrac{0.1}{0.01}}

\longrightarrow\sf{\dfrac{\omega^2}{\pi^2}=10}

Taking square roots,

\longrightarrow\sf{\dfrac{\omega}{\pi}=\sqrt{10}}

And dividing both sides by 2,

\longrightarrow\sf{\dfrac{\omega}{2\pi}=\dfrac{\sqrt{10}}{2}}

\longrightarrow\sf{\dfrac{\omega}{2\pi}=\dfrac{\sqrt{5}\times\sqrt2}{2}}

\longrightarrow\sf{\dfrac{\omega}{2\pi}=\sqrt{\dfrac{5}{2}}}

But, \sf{\dfrac{\omega}{2\pi}=\nu,} frequency. Therefore, frequency of the SHM is,

\longrightarrow\underline{\underline{\sf{\nu=\sqrt{\dfrac{5}{2}}\ s^{-1}}}}

Similar questions