Physics, asked by jackzzjck, 7 months ago

Power supplied to a particle of mass 3kg varies with time as P = 3/2t² W. Here t is in seconds. If velocity of particle at t = 0 is v = 0.The velocity of particle at t =3 seconds will be:- a)1m/s b)4m/s c) 2m/s d)3 m/s

No Spam!!!

Answers

Answered by Mysterioushine
23

Given :

  • Mass of the particle = 3 kg
  • Power varying with time t = 3t²/2
  • Velocity at t = 0 is zero

To find :

  • The velocity of the particle at t = 3 sec

Solution :

The relation between mass , Power and velocity is given by ,

 \dag{\large{\boxed {\bf{P= FV}}}}

Also ,

  :\implies\bf \: F= ma \longrightarrow \: eq(1)

Where ,

  • m is mass
  • a is acceleration
  • F is force

and a is also given by ,

 \displaystyle  : \implies \bf \: a =   \frac{dv}{dt} \longrightarrow \: eq(2)

From eq(1) and eq(2) ,

  : \implies \bf \: p = (ma) \times v \\  \\   : \implies \bf \: p =  \bigg(m \frac{dv}{dt}  \bigg) \times v \\   \\  : \implies \bf \: p. dt= (m.dv) \times v

Integrating on both sides ,

 :  \implies \bf  \large\int p.dt =  \int(mv.dv)  \\  \\

We have ,

  • P = 3t²/2

 :  \implies \bf \int \:  \frac{3 {t}^{2} }{2} \: dt =  m\int (v \: dv) \\  \\    : \implies \bf  \frac{3}{2} \int \: t {}^{2} \: tdt =  m \int \: (v \: dv )

\boxed{\bf{ \int a {}^{t}  \: dt =  \int  \frac{a {}^{t + 1} }{t + 1} }}

  : \implies \bf \:  \frac{3}{2}   \bigg(\:  \frac{t {}^{2 + 1} }{2 + 1}  \bigg) = m \bigg( \frac{v {}^{1 + 1} }{1 + 1}  \bigg) \\  \\   : \implies \bf \:  \frac{3}{2}  \bigg( \frac{t {}^{3} }{3} \bigg) = m \bigg ( \frac{ {v}^{2} }{2}  \bigg)

We have ,

  • m = 3 kg

 \displaystyle :  \implies \bf \:  \frac{3 {t}^{3} }{6}  = 3 \bigg( \frac{ {v}^{2} }{2}  \bigg)

We need the velocity at t = 3 sec . so substituting t = 3 sec we get ,

 :  \implies \bf \:  \frac{3(3) {}^{3} }{6}  =  \frac{3{v}^{2} }{2}  \\  \\  :  \implies \bf \:  \frac{3(27)}{6}  =  \frac{3 {v}^{2} }{2}  \\  \\ :   \implies \bf \:  \frac{81}{6}  =  \frac{3 {v}^{2} }{2}  \\  \\   : \implies \bf \: 81 \times 2 = 6 \times 3 {v}^{2}  \\  \\   : \implies \bf \: 162 = 18 {v}^{2}  \\  \\   : \implies \bf \:  \frac{162}{18}  =  {v}^{2}  \\  \\  : \implies \bf \: 9 =  {v}^{2}

 :  \implies \bf \:  \sqrt{9}  = v \\  \\   : \implies \bf \:  \sqrt{ {(3)}^{2} }  = v \\  \\   : \implies \bf \: v = 3 \: m {s}^{ - 1}

∴ The velocity of the particle at t = 3 sec is 3 m/s

Hence , Option(d) is the required answer.

Similar questions