Math, asked by asiskaurasis629, 11 months ago

Pq and rq are chords of a circle equidistant from the centre

Answers

Answered by AnmolRaii
0

A chord of a circle is a straight line segment whose endpoints both lie on the circle. A secant line, or just secant, is the infinite line extension of a chord. More generally, a chord is a line segment joining two points on any curve, for instance an ellipse.

Answered by Anonymous
0

Theorem: Congruent chords of circle are equidistant from the center of the circle.

Given: 'O' is the center of the circle, where Chord AB ≅ Chord MN.

To prove that: CO ≅ PO

Construction: Draw radii OB and radii ON.

Proof: OC ⊥ AB and OP ⊥ MN (Given)

Therefore,

                        Seg AB = Seg PN (Given)

                        CB = 1/2 AB; PN = 1/2 MN

                      ∴ Seg CB = Seg PN ------ (i)

Now,

In ΔOCB and ΔOPN,

Seg CB ≅ Seg PN ----- From i

∠OCB ≅ ∠OPN ----- Each 90°

Seg OB ≅ Seg ON ------- Radii of circle

            ∴ ΔOCB ≅ ΔOPN (Hypo. side test)

            ∴ Seg OP = Seg CO ------- C.S.C.T

Therefore, Chords are equidistant from the center of the circle.

"Refer to the Given attachment".

Attachments:
Similar questions