Pq and rq are chords of a circle equidistant from the centre
Answers
Answered by
0
A chord of a circle is a straight line segment whose endpoints both lie on the circle. A secant line, or just secant, is the infinite line extension of a chord. More generally, a chord is a line segment joining two points on any curve, for instance an ellipse.
Answered by
0
Theorem: Congruent chords of circle are equidistant from the center of the circle.
Given: 'O' is the center of the circle, where Chord AB ≅ Chord MN.
To prove that: CO ≅ PO
Construction: Draw radii OB and radii ON.
Proof: OC ⊥ AB and OP ⊥ MN (Given)
Therefore,
Seg AB = Seg PN (Given)
CB = 1/2 AB; PN = 1/2 MN
∴ Seg CB = Seg PN ------ (i)
Now,
In ΔOCB and ΔOPN,
Seg CB ≅ Seg PN ----- From i
∠OCB ≅ ∠OPN ----- Each 90°
Seg OB ≅ Seg ON ------- Radii of circle
∴ ΔOCB ≅ ΔOPN (Hypo. side test)
∴ Seg OP = Seg CO ------- C.S.C.T
Therefore, Chords are equidistant from the center of the circle.
"Refer to the Given attachment".
Attachments:
Similar questions
Social Sciences,
6 months ago
Math,
6 months ago
English,
6 months ago
Physics,
1 year ago
Chemistry,
1 year ago