Math, asked by prabhjit51, 11 months ago

PQ and RSare two mirror placed parallel to each other .An incident ray AB strikes the mirror pq at b the reflected ray moves along the path BC strikes the mirror RS at c and again reflected back along CD .prove that AB parallel to CD

Answers

Answered by Anonymous
2

Solutions:

Draw BE and CF normals to the mirrors PQ and RS at B and C respectively.

Then, BE ⊥ PQ and CF ⊥ RS.

Since, BE and CF are perpendicular to parallel lines PQ and RS respectively. Therefore, BE || CF.

Since, BE || CF and transversal BC intersects BE and CF at B and C respectively.

Hence, ∠3 = ∠2 .............. [Alternate angles]..... (i)

But, ∠3 = ∠4 and ∠1 = ∠2 ........... [Since, angle of incidence = angle of reflection] ........ (ii)

=> ∠4 = ∠1

=> ∠3 + ∠4 = ∠2 + ∠1 .......... [Adding corresponding sides of (i) and (ii)]

=> ∠ABC = ∠BCD

Thus, transversal BC intersects lines AB and CD such that alternate interior angles ∠ABC and ∠BCD are equal. Hence, AB || CD

Attachments:
Answered by CommanderBrainly
2

Step-by-step explanation:

{\huge{\boxed{\sf{\pink{☞Answe࿐★}}}}}

PQ || RS ⇒ BL || CM

[∵ BL || PQ and CM || RS]

Now, BL || CM and BC is a transversal.

∴ ∠LBC = ∠MCB …(1) [Alternate interior angles]

Since, angle of incidence = Angle of reflection

∠ABL = ∠LBC and ∠MCB = ∠MCD

⇒ ∠ABL = ∠MCD …(2) [By (1)]

Adding (1) and (2), we get

∠LBC + ∠ABL = ∠MCB + ∠MCD

⇒ ∠ABC = ∠BCD

i. e., a pair of alternate interior angles are equal.

∴ AB || CD.

Similar questions