PQ is chord parallel to a tangent at the circle at R. prove that R bisects the arc PRQ
Answers
━━━━━━━━━━━━━──────━━━━━━━━━━━━━
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQ
ᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2
⇨MRN∣∣PQ
∴ ∠1=∠3 [Alternate interior angles]
⇨∠2=∠3
⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]
∵ Equal chords subtend equal arcs in a circle so
arcPR=arc RQ or R bisect the arc PRQ.
- Hence proved.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━─━
Answer:
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQ
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle so
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle soarcPR=arc RQ or R bisect the arc PRQ.
ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle soarcPR=arc RQ or R bisect the arc PRQ.Hence proved.