Math, asked by Avirajj6117, 3 months ago

PQ is chord parallel to a tangent at the circle at R. prove that R bisects the arc PRQ

Answers

Answered by Anonymous
7

━───━━━━

 \large \underline \red{ᴀɴsᴡᴇʀ: - }

ɴʀɪɴ : - Join RP and RQ

ʀ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2

⇨MRN∣∣PQ

∴ ∠1=∠3 [Alternate interior angles]

⇨∠2=∠3

⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]

∵ Equal chords subtend equal arcs in a circle so

arcPR=arc RQ or R bisect the arc PRQ.

  • Hence proved.

Attachments:

Anonymous: Out standing :-)
Anonymous: thank u thank u!!
Anonymous: No thanks its my plesure
Answered by Anonymous
6

Answer:

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQ

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle so

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle soarcPR=arc RQ or R bisect the arc PRQ.

ᴄᴏɴꜱᴛʀᴜᴄᴛɪᴏɴ : - Join RP and RQᴘʀᴏᴏꜰ :- Chord RP subtends ∠1 with tangent MN and ∠2 in alternates segment of circle so ∠1=∠2⇨MRN∣∣PQ∴ ∠1=∠3 [Alternate interior angles]⇨∠2=∠3⇨PR=RQ [Sides opp. to equal ∠s in ΔRPQ]∵ Equal chords subtend equal arcs in a circle soarcPR=arc RQ or R bisect the arc PRQ.Hence proved.

Attachments:
Similar questions