PQ is post of given height a and AB is a tower at some distance. If alpha and beta are the angles of elevation of B (top of the tower) respectively from PQ. Prove the height AB = a tan alpha / tan alpha - tan beta and the distance between the post and the tower is a / tan alpha - tan beta?
Answers
Answered by
127
h = height of tower AB
x = distance from post PQ to tower AB
tan α = h/x
x = h / tan α
tan β = (h-a)/x
x = (h-a) / tan β
h / tan α = (h - a) / tan β
h tan α - a tan α = h tan β
h tan α - h tan β = a tan α
h (tan α - tan β) = a tan α
h = a tan α / (tan α - tan β)
x = h / tan α
x = a / (tan α - tan β)
x = distance from post PQ to tower AB
tan α = h/x
x = h / tan α
tan β = (h-a)/x
x = (h-a) / tan β
h / tan α = (h - a) / tan β
h tan α - a tan α = h tan β
h tan α - h tan β = a tan α
h (tan α - tan β) = a tan α
h = a tan α / (tan α - tan β)
x = h / tan α
x = a / (tan α - tan β)
Attachments:
Answered by
44
h = height of tower AB
x = distance from post PQ to tower AB
tan α = h/x
x = h / tan α
tan β = (h-a)/x
x = (h-a) / tan β
h / tan α = (h - a) / tan β
h tan α - a tan α = h tan β
h tan α - h tan β = a tan α
h (tan α - tan β) = a tan α
h = a tan α / (tan α - tan β)
x = h / tan α
x = a / (tan α - tan β)
Similar questions