PQ is the diameter of a circle and PR is a chord, if PQ = 34cm and
PR = 30cm. Find the distance of PR from the center of the circle
Answers
★Given:-
- PQ is the diameter of a circle.
- PR is a chord
- PQ = 34cm
- PR = 30cm
★To find:-
- The distance of PR from the center of the circle
★Solution:-
From the diagram,
OX is the perpendicular distance from centre O to the chord PR
∴ PX=XR
→PX+XR=PR
As [PX = XR],
⇒PX + PX = PR
⇒2PX=PR
⇒2PX=30
⇒PX= 30/2
⇒PX=15
Also,
→PO+OQ=PQ
As [PO = OQ],
⇒ PO+PO = PQ
⇒2PO=PQ
⇒2PO=34
⇒PO=17
We know,
- ΔPOX is a right angled triangle.
By pythagoras theorem,
✦(Hypotenuse)²=(perpendicular)²+(base)²
Putting values,
⇒ (PO)²=(OX)²+(PX)²
⇒ 17² = (OX)²+15²
⇒ (OX)² = 17²-15²
⇒ OX = √64
⇒ OX = 8cm
Hence,
The distance of PR from center of circle is 8cm.
______________
Given : The diameter of the circle PQ (D) = 34 cm
⇒ Radius (r) = 17 cm
Chord PR = 30 cm
Let O be the centre of the circle
OS be the perpendicular bisector of the chord PR &
PS = SR = 30/2 = 15 cm
OS is the distance of the chord from the centre (d)
Now ΔOPS is a right angled triangle with right angle at S
so, from Pythogaras theorem
OP² = PS² + OS²
⇒ r² = 15² + d²
⇒ 17² = 15² + d²
⇒ d² = 64
∴ d = 8 cm