PQR and QST are two triangles such that
ang4 = ang6
ang1 =ang 3
ang4 =ang 5
Prove that angleR = angleT
Attachments:
Answers
Answered by
7
anglePQR=angleSQT
ANGLE1+ANGLE2=ANGLE3+ANGLE2
ANGLE1=ANGLE3(GIVEN)
ANGLE4=ANGLE5 (GIVEN)
ANGLEPQR+ANGLEQPR+ANGLEPRQ=180(ANGLE SUM PROPERTY)
ANGLEQST+ANGLETQS+ANGLESTQ=180(ANGLE SUM PROPERTY)
ANGLEPQR+ANGLEQPR+ANGLEPRQ=ANGLEQST+ANGLETQS+ANGLESTQ=180
THEREFORE, angleR=angleT
ANGLE1+ANGLE2=ANGLE3+ANGLE2
ANGLE1=ANGLE3(GIVEN)
ANGLE4=ANGLE5 (GIVEN)
ANGLEPQR+ANGLEQPR+ANGLEPRQ=180(ANGLE SUM PROPERTY)
ANGLEQST+ANGLETQS+ANGLESTQ=180(ANGLE SUM PROPERTY)
ANGLEPQR+ANGLEQPR+ANGLEPRQ=ANGLEQST+ANGLETQS+ANGLESTQ=180
THEREFORE, angleR=angleT
Answered by
6
Answer:
Step-by-step explanation:
Attachments:
Similar questions