PQR is a triangle. S is any point on a line through P parallel to QR. If T is any point on
a line through R parallel to SQ, then the three triangles equal in area are
Answers
Answered by
0
Answer
AnswerIn ΔPQR, we have
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠Q
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠QNow, ST∥QR.
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠QNow, ST∥QR.⇒∠PST=∠PQR and ∠PTS=∠PRQ [∵ Corresponding angles are equal]
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠QNow, ST∥QR.⇒∠PST=∠PQR and ∠PTS=∠PRQ [∵ Corresponding angles are equal]⇒∠PST=∠Q and ∠PTS=∠R
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠QNow, ST∥QR.⇒∠PST=∠PQR and ∠PTS=∠PRQ [∵ Corresponding angles are equal]⇒∠PST=∠Q and ∠PTS=∠R⇒∠PST=∠PTS
AnswerIn ΔPQR, we havePQ=PR⇒∠R=∠QNow, ST∥QR.⇒∠PST=∠PQR and ∠PTS=∠PRQ [∵ Corresponding angles are equal]⇒∠PST=∠Q and ∠PTS=∠R⇒∠PST=∠PTS⇒PT=PS
Similar questions